Identification of amino acids and domains required for catalytic activity of DPPR synthase, a cell wall biosynthetic enzyme of Mycobacterium tuberculosis.

نویسندگان

  • Hairong Huang
  • Stefan Berg
  • John S Spencer
  • Danny Vereecke
  • Wim D'Haeze
  • Marcelle Holsters
  • Michael R McNeil
چکیده

Decaprenylphosphoryl-d-arabinose (DPA) has been shown to be the donor of the essential d-arabinofuranosyl residues found in the cell wall of Mycobacterium tuberculosis. DPA is formed from phosphoribose diphosphate in a four-step process. The first step is the nucleophilic replacement of the diphosphate group with decaprenyl phosphate. This reaction is catalysed by the integral membrane protein 5-phospho-alpha-D-ribose-1-diphosphate : decaprenyl-phosphate 5-phosphoribosyltransferase (DPPR synthase). The enzyme is essential for growth and thereby an important target candidate for the development of new tuberculosis drugs. Although membrane proteins are an important subset of targets for current antibacterial agents, details about the structures and the active sites of such proteins are often not readily available by X-ray crystallography. To begin a different approach to the issue, homologues from Mycobacterium smegmatis and Corynebacterium glutamicum were expressed in Escherichia coli and shown to be active DPPR synthases. This was followed by bioinformatic analyses of the aligned sequences and then by site-directed mutagenesis of amino acids identified as likely to be important for activity. The results suggested that the enzymic synthesis of decaprenyl-phosphate 5-phosphoribose (DPPR) occurs on the cytoplasmic side of the plasma membrane. Amino acid substitutions showed that the predicted cytoplasmic N-terminal region and two cytoplasmic loops are involved in substrate binding and/or catalysis along with parts of some adjoining inner membrane regions. The enzyme lacks the classical phosphoribose diphosphate (pRpp) binding site found in nucleic acid precursor enzymes of both prokaryotes and eukaryotes but instead contains a conserved NDxxD motif required for enzymic activity. Thus, it is plausible that this DPPR synthase has a pRpp binding site that is different from that of the classical eukaryotic enzymes, and further work to develop inhibitors against this enzyme is thereby encouraged.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabinan-deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-D-arabinose metabolism.

The arabinogalactan (AG) of Corynebacterianeae is a critical macromolecule that tethers mycolic acids to peptidoglycan, thus forming a highly impermeable cell wall matrix termed the mycolyl-arabinogalactan peptidoglycan complex (mAGP). The front line anti-tuberculosis drug, ethambutol (Emb), targets the Mycobacterium tuberculosis and Corynebacterium glutamicum arabinofuranosyltransferase Mt-Emb...

متن کامل

Insilico studies of 2-methylheptyl isonicotinate produced by Streptomyces sps. 201 against dihydrodipicolinate synthase enzyme of Mycobacterium tuberculosis

Tuberculosis is thought to have infected onethird of the world’s population and antibiotic resistance is a growing problem in multi-drugresistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). It has been reported that Mycobacterial cell walls are characterized by high DAP (diaminopimelic acid) content—an intermediate of the (S)-lysine biosynthetic pathway. Hence, the Lysine/...

متن کامل

Design of peptides interfering with iron-dependent regulator (IdeR) and evaluation of Mycobacterium tuberculosis growth inhibition

Objective(s): Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), stayed a global health thread with high mortality rate. Since TB has a long-term treatment, it leads high risk of drug resistant development, and there is an urgent to find new drugs. The aim of this study was designing new inhibitors for a new drug target, iron dependent regulator, IdeR. Materials and Method...

متن کامل

Identification, cloning, purification, and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase.

The enzyme encoded by Rv2682c in Mycobacterium tuberculosis is a functional 1-deoxy-D-xylulose 5-phosphate synthase (DXS), suggesting that the pathogen utilizes the mevalonate-independent pathway for isopentenyl diphosphate and subsequent polyprenyl phosphate synthesis. These key precursors are vital in the biosynthesis of many essential aspects of the mycobacterial cell wall. Rv2682c encodes t...

متن کامل

A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms.

Mycolic acids are major and specific constituents of the cell envelope of Corynebacterineae, a suborder of bacterial species including several important human pathogens such as Mycobacterium tuberculosis, Mycobacterium leprae, or Corynebacterium diphtheriae. These long-chain fatty acids are involved in the unusual architecture and impermeability of the cell envelope of these bacteria. The conde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 154 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2008